ABG Interpretations

Collected by

Dr. MOHAMMED AQLAN

PEDIATRICIAN- UNVERSITY HOSPITAL, Sanaa

Why Order an ABG?

- Aids in establishing a diagnosis
- Helps guide treatment plan
- Aids in ventilator management
- Improvement in acid/base management allows for optimal function of medications
- Acid/base status may alter electrolyte levels critical to patient status/care

	PH	PaO2 mmHg	PaCO ₂ mmHg	HCO3 mEq/L	
Cord blood	7.28 +- 0.05	18 +- 6.2	49.2+- 8.4	14-22	
At birth	7.11 - 7.36	8-24	27-40	13-22	
5-10 min	7.09- 7.3	33-75	27-40	13-22	
30 min	7.21- 7.38	31-85	27-40	13-22	
60 min	7.26- 7.49	55-80	27-40	13-22	
1 day	7.29-7.45	54-95	27-40	13-22	
Thereafter	7.35-7.45	83-108	32-48	20-28	

Table 1.

Comparison of blood gas analysis at different sites

Variables	Arterial	Venous	
pH	Same	Lower	
PaCO ₂	Lower	Higher	
PaO ₂	Higher	Lower	
HCO ₃	Same	Same	_ ;

Base Excess(BE) / Base Deficit (BD)

- ► Normal range -2-2
- Positive (excess) (> +2mmol/L) indicates that there is a higher than normal amount of HCO₃₋ in the blood, which may be due to a primary metabolic alkalosis or a compensated respiratory acidosis.
- Negative(deficit (< -2mmol/L) indicates that there is a lower than normal amount of HCO_{3₂} in the blood, suggesting either a primary metabolic acidosis or a compensated respiratory alkalosis.

Predicted PH:

```
-If PaCO_2 < 40 = 7.4[(40 - PaCO_2)/100] \times 0.5
```

- If $PaCO_2 > 40 = 7.4[(40 + PaCO_2)/100]$
- BD or BE= (PH predicted PH) ×67

Blood	Gas	Report
248	05:36	Jul 22 2000
PtID	2570 / 00	

37.0°C

38.6° C

Measured

PII	1.400	
pCO ₂	44.4	mm F
pO ₂	113.2	mm H

Corrected

7.439	
47.6	mm Hg
123.5	mm Hg
	47.6

Calculated Data

Calculat	cu Data	
HCO ₃ act	31.1	mmol/L
HCO ₃ std	30.5	mmol/L
BE	6.6	mmol / L
O ₂ CT	14.7	mL/dl
O2 Sat	98.3	%
ct CO ₂	32.4	mmol/L
pO2 (A - a)	32.2	mm Hg
pO2 (a / A)	0.79	

Entered Data

Temp	38.6	°C
ct Hb	10.5	g/dl
FiO ₂	30.0	%

The Anatomy of a Blood Gas Report

Measured Values

Temperature Correction:

Is there any value to it?

Calculated Data:

Which are the useful ones?

Entered Data:

Derived from other sources

STEP 1

► Acidosis or alkalosis.

see PH

pH normal = fully compensated

All values abnormal = partially compensated

Two abnormal values = uncompensated

STEP 2

► Respiratory or metabolic

▶ (primary pathology).

Uncompensated: Co2 or HCo3 normal

Partially Compensated: Nothing is normal

Compensated: PH is normal (7.4 baseline/neutral)

ACID BASE MNEMONIC (ROME)

Respiratory

Opposite_

Metabolic

Equal

pH↑ HCO₃↑ Alkalosis pH↓ HCO₃↓ Acidosis

	pН	PaCO ₂	HCO3
Respiratory Alkalosis	1	1	Normal
Respiratory Acidosis	1	T	Normal
Metabolic Alkalosis	1	Normal	1
Metabolic Acidosis	1	Normal	1

STEP 3

▶Is there is compensation

Compensatory changes (Metabolic disorders).

Primary disorder	Primary defect	Compensatory response	Expected Compensation	Limits of compensation
Metabolic acidosis	↓ HCO3	↓ PCO2	PCO2=1.5[HCO3] + 8 ± 2 PCO2= last 2 digits of pH X 100 PCO2= 15+ [HCO3]	PCO2=15mmHg
Metabolic Alkalosis	↑ HCO3	↑ PCO2	PCO2= + 0.6 mmHg for Δ [HCO3] of 1 mEq/L PCO2=15+ [HCO3]	PCO2=55mmHg

Remember.....

√ Respiratory compensation

is always FAST ...12-24 hrs

✓ Metabolic compensation

is always 5 0 0 ... 5 -7 days

STEP 3

▶Is there is

compensation

Compensatory changes (Respiratory disorders).

Primary disorder	Primary defect	Compensatory response	Expected Compensation	Limits of compensation
Respiratory ↑ PCO2 ↑ HCO3 acidosis	↑ HCO3	Acute: + 1 Meq/L ↑ HCO3 for each ↑ PCO2 of 10mmHg	[HCO3]=38 Meq/L	
		Chronic: +4 Meq/L ↑ HCO3 for each ↑ PCO2 of 10mmHg	[HCO3]=45 Meq/L	
Respiratory Alkalosis		↓ PCO2 ↓ HCO3	Acute: -2Meq/I ↓ in HCO3 for each ↓ in PCO2 of 10mmHg	[HCO3]=18 Meq/L
			Chronic: -5 Meq/L ↓ in HCO3 for each ↓ in PCO2 of 10mmHg	[HCO3]=15 mEq/L

Table 52-9 APPROPRIATE COMPENSATION DURING SIMPLE ACID-

BASE DISORDERS		RCA 10
DISORDER	EXPECTED COMPENSATION	RKA102

RCC103 $PCO_2 = 1.5 \times [HCO_3] + 8 \pm 2$ Metabolic **RKC104** acidosis

Pco2 increases by 7 mm Hg for each 10-mEg/L increase in Metabolic alkalosis serum [HCO₃7]

Respiratory acidosis

[HCO₃⁻] increases by 1 for each 10-mm Hg increase in Pco₂ Acute

Chronic [HCO₃⁻] increases by 3.5 for each 10-mm Hg increase in Pco₂

[HCO₃⁻] falls by 4 for each 10-mm Hg decrease in Pco₂

Respiratory alkalosis

[HCO₃⁻] falls by 2 for each 10-mm Hg decrease in Pco₂ Acute

Chronic

Summary of ABG findings in simple acid-base disturbances

Acid-base disturbance	рН	pCO,	нсо,	Compensatory response
Metabolic acidosis	1	1	1	Immediate: respiratory compensation with hyperventilation and decreased pCO ₂
Respiratory acidosis	1	î	↑ or ↔	Delayed kidneys compensate by retaining HCO ₃ (concentrations generally > 30)
Metabolic alkalosis	t	1	1	Immediate: respiratory compensation with hypoventilation and increased pCO ₂
Respiratory alkalosis	1	1	↓ or ↔	Delayed kidneys compensate through HCO ₃ loss (concentrations generally < 18)

Correction always in same direction

	Metabolic	respiratory
Acidosis	⁺ Hco3 🔪	P co2 ↑
Alkalosis	↑ Hco3	pco2 +

STEP 4

▶ If metabolic acidosis -

High AG or normal AG

MUD-PIELS

M ethanol

U remia

D iabetic Ketoacidosis

P araldehyde

Infection (lactic acid)

E thylene Glycol

S alicylate

HARD-UPP

Hyper Alimentation

<u>A</u>cetazolamide

Renal Tubular Acidosis

<u>D</u>iarrhea

<u>Ureterosibmoidostomy</u>

Pancreatic Fistula

Primary Hyperparathyroidism

A child with pneumonia on ventilator has following ABG report.

• pH : 7.29

PCO2 : 60 mmHg

• PaO2 : 68 mmHg

HCO3 : 30 mMol/L

• SpO2 : 92%

1. What is the acid base disorder?

2. Is it a simple disorder or mixed?

3. Is it a compensated disorder?

B) \$8 42

ABG in OSCE EXAM

1

- ▶ pH 7.28
- ► PaCO₂54mmHg
- ► PaO₂ 45mmHg
- ► HCO₃ 29mEq/L
- ► Base excess +7

What are the-

► Abnormalities?

Diagnosis?

► Likely causes?

► Low pH, high PaCO₂, low PaO₂, high HCO₃

Uncompensated respiratory acidosis with hypoxemia

► RESPIRATORY FAILURE (pneumonia, RDS)

- ▶ pH 7.57
- ► PaCO2 22mmHg
- ► PaO2 156mmHg
- ► HCO3 18mEq/L
- ► Base excess -8

What are the-

Abnormalities?

Diagnosis?

Likely cause?

► High pH, low PaCO2, high PaO2, low HCO3

UNCOMPENSATED RESPIRATORY ALKALOSIS WITH HYPEROXIA

► Hyperventilation with high FiO2

3

- pH 7.32
- PaCO₂ 30mmHg
- PaO₂ 70mmHg
- HCO₃ 12mEq/L
- Base excess-8

QUESTIONS

ABNORMALITIES

DIAGNOSIS

LIKELY CAUSES

 Low pH, low PaCO2, normal PaO2, low HCO3

- UNCOMPENSATED METABOLIC ACIDOSIS
- SHOCK, RENAL FAILURE

4

- pH 7.60
- PaCO₂ 21mmHg
- PaO₂ 65mmHg
- HCO₃ 24mEq/L
- Base excess+2

QUESTIONS

- ABNORMALITIES
- DIAGNOSIS

LIKELY CAUSES

- ► High pH, low PaCO2, normal PaO2, normal HCO3
- UNCOMPENSATED RESPIRATORY ALKALOSIS

► HYPERVENTILATION (BRONCHIAL ASTHMA)

- pH 7.36
- PaCO₂ 70mmHg
- PaO₂ 75mmHg
- HCO₃ 35mEq/L
- Base excess+14

QUESTIONS

- ABNORMALITIES
- DIAGNOSIS

LIKELY CAUSES

► Low pH, high PaCO2, normal PaO2, high HCO3

COMPENSATED RESPIRATORY ACIDOSIS

► VENTILATED INFANT WITH TUBE BLOCK

6

- pH 7.52
- PaCO₂ 47mmHg
- PaO₂ 80mmHg
- HCO₃ 30mEq/L
- Base excess+3

QUESTIONS

- ABNORMALITIES
- DIAGNOSIS

LIKELY CAUSES

► High pH, high PaCO2, normal PaO2, high HCO3

► UNCOMPENSATED METABOLIC ALKALOSIS

► VOMITING, PYLORIC STENOSIS

7

- pH 7.14
- PaCO₂ 54mmHg
- PaO₂ 55mmHg
- HCO₃ 14 mEq/L
- Base excess-7

QUESTIONS

ABNORMALITIES

DIAGNOSIS

LIKELY CAUSES

Low pH, high PaCO2, normal PaO2, low HCO3

 UNCOMPENSATED RESPIRATORY AND METABOLIC ACIDOSIS

■ INFANT ON VENTILATOR WITH TUBE BLOCK & SHOCK

Thank You